将生成式AI与物理世界结合,并不容易,这里面涉及的技术链条非常长。
首先,需要对物理世界基本规律的掌握,才能将真实世界建模到仿真模拟平台。
仿真模拟平台,不仅可以仿真物理场景,还可以模拟真实世界中物体之间相互作用、运动和变形。
而生成式AI的加入,会让仿真模拟平台拥有“预演”能力。
“人类从小就知道的物理常识,AI却不知道。”黄仁勋表示,“生成式AI和仿真模拟平台结合,就是要让AI的未来能够在物理上扎根。”
黄仁勋进一步解释,让AI在虚拟世界中学习如何感知环境,并通过强化学习来理解物理行为的影响和后果,让AI实现特定目标。
这就需要用生成式 AI,预测物理世界中的千万种、甚至上亿种可能性,形成有价值的合成数据。
比如机械臂需要通过3D视觉的“眼睛”才能精准抓取,但如何排除环境变化的干扰,认出待抓取的物体(比如工厂里的零部件)?
通过仿真模拟平台掌握了“光线对场景目标的反射、折射影响”等物理规律,生成式 AI就能预测模拟出一个瓶子,在不同场景光照下,周身不同的反光程度;同一光照下,金属、塑料、木制品等不同材质物体表面呈现的状态;一堆钉子,所有可能出现的散落状态……